Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding.

نویسندگان

  • Anton S Petrov
  • Jessica C Bowman
  • Stephen C Harvey
  • Loren Dean Williams
چکیده

Magnesium plays a special role in RNA function and folding. Although water is magnesium's most common first-shell ligand, the oxyanions of RNA have significant affinity for magnesium. Here we provide a quantum mechanical description of first-shell RNA-magnesium and DNA-magnesium interactions, demonstrating the unique features that characterize the energetics and geometry of magnesium complexes within large folded RNAs. Our work focuses on bidentate chelation of magnesium by RNA or DNA, where multiple phosphate oxyanions enter the first coordination shell of magnesium. These bidentate RNA clamps of magnesium occur frequently in large RNAs. The results here suggest that magnesium, compared to calcium and sodium, has an enhanced ability to form bidentate clamps with RNA. Bidentate RNA-sodium clamps, in particular, are unstable and spontaneously open. Due to magnesium's size and charge density it binds more intimately than other cations to the oxyanions of RNA, so that magnesium clamps are stabilized not only by electrostatic interactions, but also by charge transfer, polarization, and exchange interactions. These nonelectrostatic components of the binding are quite substantial with the high charge and small interatomic distances within the magnesium complexes, but are less pronounced for calcium due to its larger size, and for sodium due to its smaller charge. Additionally, bidentate RNA clamps of magnesium are more stable than those with DNA. The source of the additional stability of RNA complexes is twofold: there is a slightly attenuated energetic penalty for ring closure in the formation of RNA bidentate chelation complexes and elevated electrostatic interactions between the RNA and cations. In sum, it can be seen why sodium and calcium cannot replicate the structures or energetics of RNA-magnesium complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of diffuse metal ion binding to RNA.

RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an over...

متن کامل

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

Determining the Mg2+ stoichiometry for folding an RNA metal ion core.

The folding and catalytic function of RNA molecules depend on their interactions with divalent metal ions, such as magnesium. As with every molecular process, the most basic knowledge required for understanding the close relationship of an RNA with its metal ions is the stoichiometry of the interaction. Unfortunately, inventories of the numbers of divalent ions associated with unfolded and fold...

متن کامل

Microenvironment analysis and identification of magnesium binding sites in RNA.

Interactions with magnesium (Mg2+) ions are essential for RNA folding and function. The locations and function of bound Mg2+ ions are difficult to characterize both experimentally and computationally. In particular, the P456 domain of the Tetrahymena thermophila group I intron, and a 58 nt 23s rRNA from Escherichia coli have been important systems for studying the role of Mg2+ binding in RNA, b...

متن کامل

The significance of Mg in prebiotic geochemistry

Magnesium plays a special role in biochemistry because of its ability to coordinate six oxygen atoms efficiently in its first coordination shell. Such oxygen atoms may be part of one or two charged oxyanions, which means that Mg²⁺ can, for instance, tie together two different phosphate groups that are located at distance from each other in a macromolecule, and in this way be responsible for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2011